取一个正整数:
如
n
{\displaystyle n}
= 6,根据上述数式,得出序列6, 3, 10, 5, 16, 8, 4, 2, 1。(步驟中最高的數是16,共有8個步驟)
如
n
{\displaystyle n}
= 11,根据上述数式,得出序列11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1。(步驟中最高的數是52,共有14個步驟)
如
n
{\displaystyle n}
= 27,根据上述数式,得出序列 {27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1}(步驟中最高的數是9232,共有111個步驟)(OEIS數列A008884)
奇偶归一猜想称,任何正整数,经过上述计算步骤後,最终都会得到1。
n
{\displaystyle n}
=27时的序列分布(横轴-步数;纵轴-运算结果)
數目少於1萬的,有著最高步驟數的是6171,共有261個步驟;數目少於10萬的,有著最高步驟數的是77031,共有350個步驟;數目少於100萬的,有著最高步驟數的是837799,共有524個步驟;數目少於1億的,有著最高步驟數的是63728127,共有949個步驟;數目少於10億的,有著最高步驟數的是670617279,共有986個步驟。
总停止时间长于任何较小起始值的数字构成如下序列:
1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, ... (OEIS數列A006877)
最大轨迹点大于任何较小起始值的起始值构成如下序列
1, 2, 3, 7, 15, 27, 255, 447, 639, 703, 1819, 4255, 4591, 9663, 20895, 26623, 31911, 60975, 77671, 113383, 138367, 159487, 270271, 665215, 704511, ... (OEIS數列A006884)
n达到1的步数为
0, 1, 7, 2, 5, 8, 16, 3, 19, 6, 14, 9, 9, 17, 17, 4, 12, 20, 20, 7, 7, 15, 15, 10, 23, 10, 111, 18, 18, 18, 106, 5, 26, 13, 13, 21, 21, 21, 34, 8, 109, 8, 29, 16, 16, 16, 104, 11, 24, 24, ... (OEIS數列A006577)
总停止时间最长,且
小于10的是9,经历19步;
小于100的是97,经历118步;
小于1000的是871,经历178步;
小于104的是6171,经历261步;
小于105的是7004770310000000000♠77031,经历350步;
小于106的是7005837799000000000♠837799,经历524步;
小于107的是7006840051100000000♠8400511,经历685步;
小于108的是7007637281270000000♠63728127,经历949步;
小于109的是7008670617279000000♠670617279,经历986步;
小于1010的是7009978065763000000♠9780657630,经历1132步;[5]
小于1011的是7010751281382470000♠75128138247,经历1228步;
小于1012的是7011989345275647000♠989345275647,经历1348步;……[6] (OEIS數列A284668)
这些数字也是具有指定步数的最低数字,但不一定是唯一的,例如经历1132步的有7009978065763100000♠9780657631,还有7009978065763000000♠9780657630。
与位数(以2为基)相关的总停止时间最小的起始值是2的幂,因为2n经历n次减半才达到1,且永远不会增加。